Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 75(1): e962-e973, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1852990

ABSTRACT

BACKGROUND: We aimed to quantify the unknown losses in health-related quality of life of coronavirus disease 2019 (COVID-19) cases using quality-adjusted lifedays (QALDs) and the recommended EQ-5D instrument in England. METHODS: Prospective cohort study of nonhospitalized, polymerase chain reaction (PCR)-confirmed severe acute respiratory syndrome coronavirus 2-positive (SARS-CoV-2-positive) cases aged 12-85 years and followed up for 6 months from 1 December 2020, with cross-sectional comparison to SARS-CoV-2-negative controls. Main outcomes were QALD losses; physical symptoms; and COVID-19-related private expenditures. We analyzed results using multivariable regressions with post hoc weighting by age and sex, and conditional logistic regressions for the association of each symptom and EQ-5D limitation on cases and controls. RESULTS: Of 548 cases (mean age 41.1 years; 61.5% female), 16.8% reported physical symptoms at month 6 (most frequently extreme tiredness, headache, loss of taste and/or smell, and shortness of breath). Cases reported more limitations with doing usual activities than controls. Almost half of cases spent a mean of £18.1 on nonprescription drugs (median: £10.0), and 52.7% missed work or school for a mean of 12 days (median: 10). On average, all cases lost 13.7 (95% confidence interval [CI]: 9.7, 17.7) QALDs, whereas those reporting symptoms at month 6 lost 32.9 (95% CI: 24.5, 37.6) QALDs. Losses also increased with older age. Cumulatively, the health loss from morbidity contributes at least 18% of the total COVID-19-related disease burden in the England. CONCLUSIONS: One in 6 cases report ongoing symptoms at 6 months, and 10% report prolonged loss of function compared to pre-COVID-19 baselines. A marked health burden was observed among older COVID-19 cases and those with persistent physical symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Cross-Sectional Studies , Female , Humans , Male , Prospective Studies , Quality of Life
2.
Lancet Reg Health Eur ; 17: 100381, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783621

ABSTRACT

Background: In settings where the COVID-19 vaccine supply is constrained, extending the intervals between the first and second doses of the COVID-19 vaccine may allow more people receive their first doses earlier. Our aim is to estimate the health impact of COVID-19 vaccination alongside benefit-risk assessment of different dosing intervals in 13 middle-income countries (MICs) of Europe. Methods: We fitted a dynamic transmission model to country-level daily reported COVID-19 mortality in 13 MICs in Europe (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine). A vaccine product with characteristics similar to those of the Oxford/AstraZeneca COVID-19 (AZD1222) vaccine was used in the base case scenario and was complemented by sensitivity analyses around efficacies similar to other COVID-19 vaccines. Both fixed dosing intervals at 4, 8, 12, 16, and 20 weeks and dose-specific intervals that prioritise specific doses for certain age groups were tested. Optimal intervals minimise COVID-19 mortality between March 2021 and December 2022. We incorporated the emergence of variants of concern (VOCs) into the model and conducted a benefit-risk assessment to quantify the tradeoff between health benefits versus adverse events following immunisation. Findings: In all countries modelled, optimal strategies are those that prioritise the first doses among older adults (60+ years) or adults (20+ years), which lead to dosing intervals longer than six months. In comparison, a four-week fixed dosing interval may incur 10.1% [range: 4.3% - 19.0%; n = 13 (countries)] more deaths. The rapid waning of the immunity induced by the first dose (i.e. with means ranging 60-120 days as opposed to 360 days in the base case) resulted in shorter optimal dosing intervals of 8-20 weeks. Benefit-risk ratios were the highest for fixed dosing intervals of 8-12 weeks. Interpretation: We infer that longer dosing intervals of over six months could reduce COVID-19 mortality in MICs of Europe. Certain parameters, such as rapid waning of first-dose induced immunity and increased immune escape through the emergence of VOCs, could significantly shorten the optimal dosing intervals. Funding: World Health Organization.

3.
Lancet Reg Health Eur ; 12: 100267, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1540829

ABSTRACT

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine supply conditions. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted age-specific compartmental models to the reported daily COVID-19 mortality in 2020 to inform the immunity level before vaccine roll-out. Models capture country-specific differences in population structures, contact patterns, epidemic history, life expectancy, and GDP per capita.We examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incrementally younger age groups. We explored four roll-out scenarios (R1-4) - the slowest scenario (R1) reached 30% coverage by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy, comorbidity- and quality-adjusted life years, and human capital. Six vaccine profiles were tested - the highest performing vaccine has 95% efficacy against both infection and disease, and the lowest 50% against diseases and 0% against infection. FINDINGS: Of the 20 decision-making metrics and roll-out scenario combinations, the same optimal strategy applied to all countries in only one combination; V60 was more or similarly desirable than V75 in 19 combinations. Of the 38 countries with fitted models, 11-37 countries had variable optimal strategies by decision-making metrics or roll-out scenarios. There are greater benefits in prioritising older adults when roll-out is slow and when vaccine profiles are less favourable. INTERPRETATION: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics, and roll-out speeds. A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust.

4.
Lancet Infect Dis ; 22(3): 302-304, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433965
5.
Lancet Infect Dis ; 21(7): 962-974, 2021 07.
Article in English | MEDLINE | ID: covidwho-1145004

ABSTRACT

BACKGROUND: In response to the COVID-19 pandemic, the UK first adopted physical distancing measures in March, 2020. Vaccines against SARS-CoV-2 became available in December, 2020. We explored the health and economic value of introducing SARS-CoV-2 immunisation alongside physical distancing in the UK to gain insights about possible future scenarios in a post-vaccination era. METHODS: We used an age-structured dynamic transmission and economic model to explore different scenarios of UK mass immunisation programmes over 10 years. We compared vaccinating 75% of individuals aged 15 years or older (and annually revaccinating 50% of individuals aged 15-64 years and 75% of individuals aged 65 years or older) to no vaccination. We assumed either 50% vaccine efficacy against disease and 45-week protection (worst-case scenario) or 95% vaccine efficacy against infection and 3-year protection (best-case scenario). Natural immunity was assumed to wane within 45 weeks. We also explored the additional impact of physical distancing on vaccination by assuming either an initial lockdown followed by voluntary physical distancing, or an initial lockdown followed by increased physical distancing mandated above a certain threshold of incident daily infections. We considered benefits in terms of quality-adjusted life-years (QALYs) and costs, both to the health-care payer and the national economy. We discounted future costs and QALYs at 3·5% annually and assumed a monetary value per QALY of £20 000 and a conservative long-run cost per vaccine dose of £15. We explored and varied these parameters in sensitivity analyses. We expressed the health and economic benefits of each scenario with the net monetary value: QALYs × (monetary value per QALY) - costs. FINDINGS: Without the initial lockdown, vaccination, and increased physical distancing, we estimated 148·0 million (95% uncertainty interval 48·5-198·8) COVID-19 cases and 3·1 million (0·84-4·5) deaths would occur in the UK over 10 years. In the best-case scenario, vaccination minimises community transmission without future periods of increased physical distancing, whereas SARS-CoV-2 becomes endemic with biannual epidemics in the worst-case scenario. Ongoing transmission is also expected in intermediate scenarios with vaccine efficacy similar to published clinical trial data. From a health-care perspective, introducing vaccination leads to incremental net monetary values ranging from £12·0 billion to £334·7 billion in the best-case scenario and from -£1·1 billion to £56·9 billion in the worst-case scenario. Incremental net monetary values of increased physical distancing might be negative from a societal perspective if national economy losses are persistent and large. INTERPRETATION: Our model findings highlight the substantial health and economic value of introducing SARS-CoV-2 vaccination. Smaller outbreaks could continue even with vaccines, but population-wide implementation of increased physical distancing might no longer be justifiable. Our study provides early insights about possible future post-vaccination scenarios from an economic and epidemiological perspective. FUNDING: National Institute for Health Research, European Commission, Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Physical Distancing , SARS-CoV-2/immunology , Vaccination/economics , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/economics , Cost-Benefit Analysis , Humans , Middle Aged , Models, Biological , Models, Economic , Pandemics/economics , Pandemics/prevention & control , Pandemics/statistics & numerical data , Patient Admission/economics , Patient Admission/statistics & numerical data , Quality-Adjusted Life Years , SARS-CoV-2/pathogenicity , United Kingdom/epidemiology , Young Adult
6.
Clin Infect Dis ; 71(12): 3196-3203, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-1043985

ABSTRACT

BACKGROUND: Internationally, key workers such as healthcare staff are advised to stay at home if they or household members experience coronavirus disease 2019 (COVID-19)-like symptoms. This potentially isolates/quarantines many staff without SARS-CoV-2, while not preventing transmission from staff with asymptomatic infection. We explored the impact of testing staff on absence durations from work and transmission risks to others. METHODS: We used a decision-analytic model for 1000 key workers to compare the baseline strategy of (S0) no RT-PCR testing of workers to testing workers (S1) with COVID-19-like symptoms in isolation, (S2) without COVID-19-like symptoms but in household quarantine, and (S3) all staff. We explored confirmatory re-testing scenarios of repeating all initial tests, initially positive tests, initially negative tests, or no re-testing. We varied all parameters, including the infection rate (0.1-20%), proportion asymptomatic (10-80%), sensitivity (60-95%), and specificity (90-100%). RESULTS: Testing all staff (S3) changes the risk of workplace transmission by -56.9 to +1.0 workers/1000 tests (with reductions throughout at RT-PCR sensitivity ≥65%), and absences by -0.5 to +3.6 days/test but at heightened testing needs of 989.6-1995.9 tests/1000 workers. Testing workers in household quarantine (S2) reduces absences the most by 3.0-6.9 days/test (at 47.0-210.4 tests/1000 workers), while increasing risk of workplace transmission by 0.02-49.5 infected workers/1000 tests (which can be minimized when re-testing initially negative tests). CONCLUSIONS: Based on optimizing absence durations or transmission risk, our modeling suggests testing staff in household quarantine or all staff, depending on infection levels and testing capacities.


Subject(s)
COVID-19 , SARS-CoV-2 , Asymptomatic Infections , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL